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Abstract Formulae for x-ray dynamical Bragg diffraction are derived for a plme-parallel 
crystal with arbivary thickness. These formulae are applicable even when the contribution of 
the real p3R of the atomic scattering factors to the svucture factor vanishes. Based on these 
formulae, dynamical Bragg reflection and mansmission induced only by the imaginary part of 
the atomic scattuing factor are sNdiei in detail. 

1. Introduction 

The general solution for apefiecl plane-parallel crystal was given by Zachariasen in 1945 [I]. 
In Zachariasen's treatment, for convenience, the structure factor Fh (h is the abbreviation 
of Miller indices [hkl ]  of the difiacting lattice plane) is given by 

Fh = Fkr -k i f i d i  (1 )  
where Fh, and Fki are the contributions of the real and imaginary parts of the atomic 
scattering factors, respectively. Zachariasen dealt with the problem under an additional 
limitation that the absolute value of k = Fki/Fk, (real in non-polar crystals) is much 
smaller than unity, i.e., absorption is very little. Following Zachariasen's theory, for semi- 
infinite crystals, Hirsch and Ramachandran (1950) extended the theory to large k [Z], and 
Cole and Stemple (1962) and Fingerland (1971) extended the theory to polar crystals 13, 41. 
The theoretical details were discussed by James (1963), Batterman and Cole (1964), Kat0 
(1974), and Pinsker (1978) [5-81. 

With x-rays from a tunable synchrotron radiation source, it is possible to make Fk, zero 
for some reflections from monatomic and some compound crystals, for example, the 8 4 4 
reflection from a Ge single crystal when the x-ray energy is 2.8 eV below its K-absorption 
edge [9]. There is also a similar situation in resonance Bragg scattering of y-quanta [lo]. 
In that limit, the diffraction is induced only by Fhi, i.e., by the imaginary part of the 
atomic scattering factor, and the above theories are not valid, because k and its relevant 
parameters become infinite. In 1993, Fukamachi and Kawamura dealt with this situation 
for semi-infinite crystals, for simplicity [ 1 I]. 

In this paper, we give general formulae of x-ray dynamical diffraction including 
reflection and transmission in the Bragg case. These formulae are applicable even when 
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Fhi  is zero for plane-parallel polar or non-polar crystals with arbitrary thickness. Based 
on these formulae, the properties of dynamical diffraction are studied in detail at the limit 
where FA, is zero for the Bragg crystals with arbitrary thickness. 

2. Theory 

The coherent scattering factor in a crystal is expressed by using the Fourier component of 
electron susceptibility X h  in the atomic unit form (h = m = e = I )  as 

Xh = Xhr + ixhi 

Xhr = IXh,lexP(iffh,) = -(4n/UOJ2)Fh, 

Xhi = l x k j l  eXp(iffh;) = -(4T/UWz)Fhi. 

(2) 

(3) 

(4) 

where 

and 

In (3) and (4), U is the unit cell volume and OJ thc x-ray encrgy. The phase diffcrcncc is 
given by 

6 = ffhi - ffh, ,  (5) 

XhX-h =IXk12(l-bz+i2gCOS8) (6) 

We write the product of XJ, and X-h as 

where 

IXk12 = I X k r l Z +  lXhi lZ  b = A l x h i l / l x h l z  

and 

P = lXhrI IXhi l / lXhlZ.  (7) 
In the two-beam approximation [ 1, 8, 121, the displacement field within the crystal is a 

) (8) 

2(&3 - iK0j)DO - PXhKOrDh = 0 (9) 
-PXhKorDo -t z ( t h  - iKoi)Dh = 0 (10) 

&I ko - KO, (11) 

eh = kh - KO, (12) 
where KO, = K ( l  + xor/2). KO] = Kxoi/2, K is the incident vacuum wave vector and P is 
the polarization factor. The wave vectors ?q and kh are determined by two conditions. The 
first is that they are constrained to lie on the dispersion surface. This is expressed by 

Bloch wave of the form 
= e-im(Do eikvv ,. D~ eikh.r 

where kh = ko + h and the amplitudes satisfy the system of equations 

with the resonance defects EO and e h  defined by 

(CO - iKOi)(<h - iKoi) K&p2XhX-h/4. (13) 
The second is that they are related to the incident vacuum wave vector through a tangential 
continuity boundary condition. 

In the following, we consider only the a-polarization case.The discussion for n- 
polarization is the same except that we multiply x h  by P. 
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The dispersion surface in the two-beam approximation is shown in figure 1, which 
defines the X and Y axes; the resonance error W ,  which expresses the degree of deviation 
from ihe exact Bragg condition, is given by 

where 8 is the Bragg angle; the parameters Xo, el, e,, are shown in figure 1. Note that W 
defined in this way is applicable to the case in which either x,,, or x h ;  is zero [ 1 I]. In the 
Bragg case, cos 82 < 0. 

Figure 1. Schematic diagram of the dispersion surface. The origin of the reciprocal vector is 
0, the diffraction paint is H and the Laue point is L. Axis X is parallel to the crystal surface. 

From (13), using coordinate transformation [12], we can get the values of YO for 
excitation points AI and A?: 

sin 28 
~ ~ C O S O ~ C O S B ~ ~ ~  sin28 ~ c o s e l  C O S S ~ ~ ~  

cos 8 sin ,!3 
W- t ig 

( 1 3  

1 -KOr IXh I Yo = 

I h [(W + is’)’ - (1 - b2 + i 2 p  C O S S ) ] ~  

where 
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+[(W t ig')' - (1 - bZ + i2pcos6)li 1. 
According to (9)-(13), we have 

I ,  = D ; ) / D ~ )  = 2(#) - iKoi)/(x-hKor) 

In (21)-(24), E: is the amplitude of the wave reflected into the vacuum on the entrance 
surface, and E: is the amplitude of the wave emerging into the vacuum through the exit 
surface; H is the crystal thickness. From (19), (ZO), (21) and (U), we have 

(25) 

(26) 

According to (21)-(25), we get 

1 r ,  rz [,-Zxik:'H - ,-Zniki,:'H 

rz e-ZxikLyH - *, e-2nikLi)H 
- EhU _ -  

E; 

To simplify the intensity formulae, we define 

g0 = xOi / lxh i l  

1 
1 + lXhr12/1XhdIZ 

4 =  

a =cos8,/Icosf3~~. 

In (30), the parameter q is related to x-ray energy and diffracting ttice plane. In (31), a 
is one parameter that indicates the reflection condition: Q = 1, Q z 1 and a c 1 represent 
the symmetric case, negative asymmetry and positive asymmetry, respectively, as shown in 
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figure 2. The quantities go and g are nonpositive. According to (7), (29), (30) and (31). we 
get 

b = (2q)”’ (32) 

P = [q(l  - q)1’/2 

g = goq“2. (34) 

(33) 

From (27), the reflectivity, i.e. the ratio of the reflection intensity, Ph, and the incident 
intensity PO, is given by 

The parameter s is given by 

In (38), we take the negative sign only when A e 0 and B < 0, but only when A > 0 
and B < 0 in (39). If the transmitted x-ray intensity is denoted by Pd, from (28), P,I/Po is 
given by 

Owing to the factor 2ps in6  in ( 3 3 ,  the reflection intensity PI,/Po from the two 
diffracting lattice planes with h and -h is different for a polar crystal. But in (451, there 
is no factor 2p sin 6 but 2p cos S. Since 2p cos(4) = 2p cos 6, the transmission intensity 
from the two diffracting lattice planes with h and -h is the same. When xk,  = p = 0, 
2 p  sin8 = 2 p  sin(-8) = 0, the polarity dependence of the reflection intensity vanishes. The 
Freidel law holds if x,‘, = 0, which is also indicated in [ 111. 

The integral power R in the angle-dispersive mode is given by 

where P, is PJ, or Pd. R is a function of a, q ,  s. H ,  go and 6 .  
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(s) 
Figure 2. The Bragg swttrring geomevy for a finite-thickness slab (a) negative asymmcty 
n > 1. (b) symmeuy (1 = 1. (c) positive asymmelry a < 1. 

3. Bragg reflection a n d  transmission when xhr = 0 

Based on the above formulae, the dynamical diffraction, induced only by the imaginary pai-t 
of the atomic scattering factor in the Bragg case from a plane-parallel crystal with arbitrary 
thickness, is studied in detail below. 

3.1. Bragg reflection 

In figure 3, the reflectivities P h / &  are shown as a function of W defined in (14) from -10 
to 10. They are the so-called rocking curves. When X h r  = 0 (q = l), each of them has 
the maximum value when W = 0 and is symmetric with respect to W = 0, whether the 
symmetric reflection condition (U = 1) is taken (curves 1 ,2)  or not (curve 3). But when xhr 
is not equal to zero, for cxample, I x , , ~ . ~  = l x h i l  (q = 0.5). the rocking curve is not symmetric 
with respect to W = 0, though U = 1 (curve 4). Therefore, the fact that the rocking curve 
is always symmetric with respect to W = 0 is one of the most important characteristics 
of the dynamical reflection induced by the imaginary part of the atomic scattering factor. 
This feature is helpful for judging whether the condition q = 1 is satisfied or not. When 
the crystal is thin enough, we can see the Pendellijsung fringes induced by the imaginary 
part of the atomic scattering factor (curves 2, 3), as in the Laue case [ I l l .  When sH = 40 
(curve I), the crystal can be regarded as infinite, the maximum reaches unity, and the curve 
is very sharp as indicated by Fukamachi and Kawamura [ 1 I]. In this case, there is no gap 
between the two branches which are tangential to each other at W = 0, in the dispersion 
surface [13]. 

The integral power R(sH)  of the reflected beam in the Bragg case is shown in figure 
4, for the case of q = 1 and q = 0.5. The curves are approximately linear when sH is 
comparatively small and reach steady values when sH is large. Curve 2 represents the case 
of a monatomic or centrosymmetric compound crystal. Curve 1 lies under curve 2 because 
of more absorption. Curves 3 and 4 represent the case of the two diffracting lattice planes 
with h and 4, respectively, for a polar crystal Their difference is due to crystal polarity. 
However, curve 1 represents any crystal, because the effect of the crystal polarity disappears 
when q = 1. Figure 5 shows the relationship of the integral power of the reflected beam and 
the parameter q for a crystal with finite thickness. Curve 1 represents the case of nonpolar 
crystals. It can be seen that R(q)  has the minimum value when q = 1. Curves 2 and 3 
represent the case of polar crystals. Because both q and 6 depend on x-ray energy and 
diffracting lattice plane, although the different points in curves 2 and 3 have the same value 
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W 
Figure3. The rocking curves of the diffracted beam in the Bmgg case. The parameten are (1) 
q = I .  (1 = 1. s H  = 40. I I  = -1;  (2) q = 1 . 0  = I.sH = 0.5,go = - I ;  (3) q = 1. a = 5 (or 
O.Z),sH =0.5 .g1 = -1;(4) S =O.q  = 0 . 5 . u  = 1 , s H  =O.S,go=-l 

of 6 ,  they represent different diffracting lattice planes because of the different values of q.  
We cannot compare the values in a single curve. Nevertheless, it is worth noting that the 
tWo points with the same value of q in curves 2 and 3 represent the two diffracting planes 
with h and -h. Their difference is due to the crystal polarity. They intersect when q = 1, 
which means that Friedel's law holds in this case. Experimentally, we can also use this 
feature to judge whether the condition of q = 1 is satisfied or not. 

3.2. Bragg transmission 

The rocking curves of the transmitted beam for a plane-parallel crystal in the Bragg case 
for q = 1 (curves 1 to 5) and q = 0.5 (curve 6) are shown in figure 6 .  Their symmetry is 
the same as that of the reflected beam, but the Pendellosung fringes are not found. Curves 
1, 2, 3 indicate that, with increasing crystal thickness, the intensity ratio decreases. Curves 
3, 4, 5 show the effect of the reflection condition on the intensity of the transmitted beam. 
When the other parameters are the same, the transmitted intensity is the largest for negative 
asymmeby (a > l), the smallest for positive asymmetry (a < 1). The former is called 
abnormal transmission. 

Figure 7 shows the integral intensity variation of the reflected and transmitted beam as 
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Figure 4. The integral reflecting powers R ( s H )  of the Figure S. The integral reflecting powers R(q)  of lhe 
diffracted beam in lhe Bmgg case. The parmnelers are diffracled beam m the Bragg case. The parameters are 
t i =  I , s ( , = - l , ( I ) q =  1 ; ( 2 ) q = 0 . 5 . 6 = 0 , ( 3 )  o = l , s H = 3 , f i u = - l . ( 1 ) 6 = 0 ; ( 2 ) 6 = n / 6 : ( 3 )  
q = 05.8 = n/6; (4) q = 0.5.6 = -n/6. 6 = -n/6, 

a function of the parameter a. For the reflected beam, it changes slowly with the parameter 
a and is the largest when the symmetric reflection condition is taken. However, for the 
transmitted beam it is very sensitive to the reflection condition. 
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a 
Figure 7. Integral intensity variation of the reflected (curve I )  and tmnsmitted (curve 2) beams 
as 3 funchon of the parameter U.  Other parameters are y = I, s H = 2. go = - I ,  6 = 0. 

4. Summary 

We have derived the formulae for x-ray dynamical diffraction intensities for a plane-parallel 
crystal with arbitrary thickness in the Bragg case. The formulae are applicable not only to the 
case without absorption, but also to that of strong absorption when diffraction is induced 
only by the imaginary part of the atomic scattering factors. Based on these formulae, 
we have discussed the Bragg diffraction induced only by the the imaginary part of the 
atomic scattering factor for a plane-parallel crystal with arbitrary thickness. The following 
conclusions have been obtained. 

Firstly, the rocking curve is always symmetric with respect to W = 0, whether the 
symmetric reflection condition is taken or not. We found the Pendellosung fringes induced 
by the imaginary part of the atomic scattering Factor, when the crystal is thin enough. 

Secondly, Friedel’s law holds when xtar = 0, even for a polar finite crystal. 
Thirdly, for a monatomic or centrosymmetric compound crystal, the integral reflecting 

power takes the minimum value when xh, = 0. 
Finally, the transmitted intensity is very sensitive to the reflection condition and increases 

as the parameter a increases. It is well known that it is very difficult to detect point defects 
of the order of 1 wm in a nearly perfect crystal by conventional x-ray topography, so the 
Bomnann effect is used instead. In 1971, Kishino obtained the numerical solutions to the 
elementary equations in the Bragg case for a thin crystal and pointed out an anomalous 
enhancement of a transmitted beam at extremely asymmetric reflection [14]. This effect 
was later used to study the perfection of GaP [15]. We have derived the analytical solutions 
and obtained the same result more simply than Kishino, so they could be used For x-ray 
topography based on the Bomnan effect more conveniently. 
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